

MODEL **EK7**

BACKLASH FREE ELASTOMER COUPLINGS

with expanding shaft

Properties:

- short compact design
- easy mounting
- high concentricity
- axial mounting of the expanding shaft hub
- backlash-free
- electrical insulating

Material:

Clamping hub: up to series 450 high strength aluminum, from series 800 and up steel

Expanding shaft & cone: steel

Elastomer insert: precision molded, wear resistant,

and thermally stable polymer

Design: Two coupling hubs are concentrically machined

with concave driving jaws

One side with clamping hub and a radial screw

ISO 4762

One side with an expanding shaft and tapered

clamping element

Suggested bore tolerance for the shaft: H7

Over 4,000 rpm a finely balanced version is

Tolerance:

Speed**:

On the hub/shaft connection 0.01 to 0.05 mm

BA - J - L EVZ			Series																							
Model EK7			5		10		20		60		150			300			450			800						
Type (Elastomer insert)			А	В	С	А	В	С	Α	В	С	Α	В	С	Α	В	С	Α	В	С	А	В	С	Α	В	С
Rated torque	(Nm)	T _{KN}	9	12	2	12.5	16	4	17	21	6	60	75	20	160	200	42	325	405	84	530	660	95	950	1100	240
Max. torque*	(Nm)	T_{Kmax}	18	24	4	25	32	6	34	42	12	120	150	35	320	400	85	650	810	170	1060	1350	190	1900	2150	400
Overall length	(mm)	А	22		28		40		46			51		68		76		94								
Outer diameter	(mm)	В	25		32		42		56		66.5		82		102		135									
Outer diameter with screwhead	(mm)	Bs	B _S 25		32		44.5		57		68			85			105			139						
Mounting length	(mm)	C ₁	8		10.3		17		20		21			31			34			46						
Mounting length	(mm)	C_2	12		20		25		27		32		45		55		60									
Inner diameter range H7	(mm)	D_1	D ₁ 4 - 12.7		.7	5 - 16		8 - 25		12 - 32		19 - 36		20 - 45		28 - 60		35 - 80								
Outer diameter range h7	(mm)	D_2	10 - 16		13 - 25		14 - 30		23 - 38			26 - 42		38 - 60		42 - 70		42 - 80								
Inner diameter max. (elastomer)	(mm)	D _E	10.2		14.2		19.2		26.2		29.2		36.2		46.2		60.5									
Mounting screw (ISO 4762/12.9)				M3			M4			M5			M6			M8			M10			M12			M16	
Tightening torque	(Nm)	E ₁		2		4		8		15			35		70		120		290							
Mounting screw (ISO 4762/12.9)				M4		M5		M6			M8			M10			M12			M16			M16			
Tightening torque	(Nm)	E ₂		4		9		12			32			60			110			240			300			
Distance between centers	(mm)	F		8			10.5			15.5			21			24			29			38			50.5	
Distance	(mm)	G		4			5			8.5			10			11			15			17.5			23	
Length	(mm)	Н		7			7			10			11			16			20			27			27	
Moment of inertia (10 ⁻³	kgm²)			0.002			0.01			0.04			0.08			0.15			0.4			1.3			9.5	
Approx. weight	(kg)			0.04			0.05			0.12			0.3			0.5			0.9			1.5			7.6	
Speed**	(rpm)		22 000		20 000			19 000			14 000			11 500			9 500			8000			4000			

Information about static and dynamic torsional stiffness as well as max. possible misalignment see page 5

¹ Nm = 8.85 in lbs

^{*} Maximum transferable torque of the clamping hub depends on the bore diameters (bore/shaft clearance 0.01 mm to 0.05 mm shaft oiled)

TECHNICAL INFORMATION EK7

Series	ØЗ	Ø 4	Ø5	Ø 8	Ø 16	Ø 19	Ø 25	Ø 30	Ø 32	Ø 35	Ø 45	Ø 50	Ø 55	Ø 60	Ø 65	Ø 70	Ø 75	Ø 80
5		1,5	2	8														
10			4	12	32													
20				20	35	45	60											
60					50	80	100	110	120									
150						120	160	180	200	220								
300						200	230	300	350	380	420							
450								420	480	510	600	660	750	850				
800										700	750	800	835	865	900	925	950	1000

Higher torque through additional keyway possible.

All data is subject to change without notice.

Mounting instructions

Mounting of the clamping hub:

Slide the coupling onto the shaft end, to the correct axial position. Tighten the mounting screw to the specified tightening torque E_1 .

See page 16/collumn E₁.

Dismounting of the clamping hub:

For dismounting loosen the mounting screw E₁

Mounting of the expanding shaft:

Push the shaft hub into the bore, at the right axial position thighten the mounting screw to the specified tightening torque E_2 .

See page 16/collumn E₂

Dismounting of the expanding shaft:

For dismounting loosen the screw E₂ a few turns.

By putting pressure on the screwhead, the inner cone slides out of its sleeve.

The shaft is now loose.

Advantage:

No access holes in the intermediate flange are neccessary in order to mount the coupling.

CAUTION:

The elastomer insert has to be able to axially move in order to compensate for axial misalignment.

www.rwcouplings.com